Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics
نویسندگان
چکیده
منابع مشابه
Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics
In this paper we consider Galerkin-finite element methods that approximate the solutions of initial-boundary-value problems in one space dimension for parabolic and Schrödinger evolution equations with dynamical boundary conditions. Error estimates of optimal rates of convergence in L and H are proved for the accociated semidiscrete and fully discrete Crank-Nicolson-Galerkin approximations. The...
متن کاملDiscrete Transparent Boundary Conditions for Wide Angle Parabolic Equations in Underwater Acoustics
This paper is concerned with transparent boundary conditions (TBCs) for wide angle “parabolic” equations (WAPEs) in underwater acoustics (assuming cylindrical symmetry). Existing discretizations of these TBCs introduce slight numerical reflections at this artificial boundary and also render the overall Crank–Nicolson finite difference method only conditionally stable. Here, a novel discrete TBC...
متن کاملAbsorbing boundary conditions for nonlinear Schrödinger equations.
A local time-splitting method (LTSM) is developed to design absorbing boundary conditions for numerical solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary conditions are significant for numerical simulations of propagations of nonlinear waves in physical applications, such as nonlinear fiber optics and Bose-Einstein condensations. Numeric...
متن کاملAdaptive computation of solutions to semilinear parabolic equations with dynamical boundary conditions
Адаптивно пресмятане на решенията на полулинейни параболични уравнения с динамични гранични условия: В настоящата статия са предложени адаптивни методи за числено пресмятане на избухващите решения на полулинейни параболични задачи с динамични гранични условия. Алгоритмите са базирани на стандартни диференчни схеми, построени върху специални, неравномерни по пространството и времето мрежи. Числе...
متن کاملHomogenization Results for Parabolic Problems with Dynamical Boundary Conditions
Abstract. The aim of this paper is to study the asymptotic behavior of the solution of a parabolic dynamical boundary -value problem in a periodically perforated domain. The domain is considered to be a fixed bounded open subset Ω⊂R , in which identical and pe riodically distributed perforations (holes) of size ε are made. In the perforated domain we consider a heat equation, with a Dirichlet c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2009
ISSN: 0036-1429,1095-7170
DOI: 10.1137/070710858